Geometry and topology of the quasiplane Szekeres model

نویسنده

  • Andrzej Krasiński
چکیده

Geometrical and topological properties of the quasi-plane Szekeres model and of the plane symmetric dust model are discussed. Some related comments on the quasihyperbolical model are made. These properties include: (1) The pattern of expansion in the plane symmetric case, and the Newtonian model that imitates it; (2) The possibility of toroidal topology of the t = const sections in the plane symmetric model; (3) The absence of apparent horizons in the quasi-plane and quasi-hyperbolic models (they are globally trapped); (4) Description of the toroidal topology in the Szekeres coordinates; (5) Consequences of toroidal topology in the nonsymmetric quasi-plane model; (6) Avoidance of shell crossings in the toroidal model; (7) Interpretation of the mass function in the quasi-plane model, with the toroidal and with the infinite space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

7 M ay 2 00 8 Geometry and topology of the quasi - plane Szekeres model

Geometrical and topological properties of the quasi-plane Szekeres model and of the plane symmetric dust model are discussed. Some related comments on the quasihyperbolical model are made. These properties include: (1) The pattern of expansion in the plane symmetric case, and the Newtonian model that imitates it; (2) The possibility of toroidal topology of the t = const sections in the plane sy...

متن کامل

5 M ay 2 00 8 Geometry and topology of the quasi - plane Szekeres model

Geometrical and topological properties of the quasi-plane Szekeres model and of the plane symmetric dust model are discussed. Some related comments on the quasihyperbolical model are made. These properties include: (1) The pattern of expansion in the plane symmetric case, and the Newtonian model that imitates it; (2) The possibility of toroidal topology of the t = const sections in the plane sy...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Construction of Hexahedral Block Topology and its Decomposition to Generate Initial Tetrahedral Grids for Aerodynamic Applications

Making an initial tetrahedral grid for complex geometry can be a tedious and time consuming task. This paper describes a novel procedure for generation of starting tetrahedral cells using hexahedral block topology. Hexahedral blocks are arranged around an aerodynamic body to form a flow domain. Each of the hexahedral blocks is then decomposed into six tetrahedral elements to obtain an initial t...

متن کامل

ISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES USING LEVEL SET METHOD INCORPORATING SENSITIVITY ANALYSIS

This study focuses on the topology optimization of structures using a hybrid of level set method (LSM) incorporating sensitivity analysis and isogeometric analysis (IGA). First, the topology optimization problem is formulated using the LSM based on the shape gradient. The shape gradient easily handles boundary propagation with topological changes. In the LSM, the topological gradient method as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008